




# MWT-PH8F 18 GHz Medium Power AlGaAs/InGaAs pHEMT

### Features:

- 30 dBm of Power at 12 GHz
- 11 dB Small Signal Gain at 12 GHz
- 42% PAE at 12 GHz
- 0.25 x 1200 Micron Refractory Metal/Gold Gate
- Excellent for Power, Gain, and High Power Added Efficiency
- Ideal for Commercial, Military, Hi-Rel Space Applications



Chip Dimensions: 670 x 315 microns Chip Thickness: 100 microns

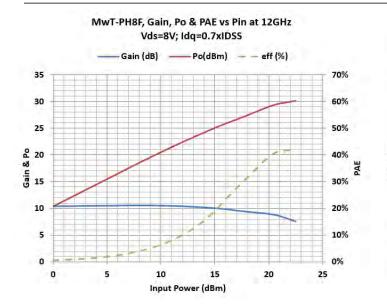
## **Description:**

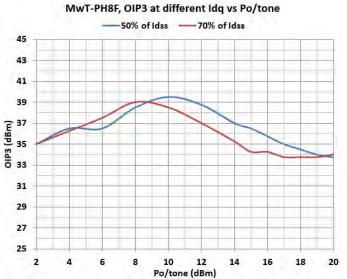
The MwT-PH8F is a AlGaAs/InGaAs pHEMT (Pseudomorphic-High-Electron-Mobility-Transistor) device whose nominal 0.25 micron gate length and 1200 micron gate width make it ideally suited for applications requiring high-gain and medium power up to 18 GHz frequency range. The device is equally effective for either wideband or narrow-band applications. The chip is produced using reliable metal systems and passivated to insure excellent reliability.

## Electrical Specifications: at Ta= 25 °C

| PARAMETERS & CONDITIONS                                     | SYMBOL | FREQ   | UNITS | MIN | TYP  |  |  |  |
|-------------------------------------------------------------|--------|--------|-------|-----|------|--|--|--|
| Output Power at 1dB Compression<br>Vds=8.0V lds=0.7xlDSS    | P1dB   | 12 GHz | dBm   |     | 27.5 |  |  |  |
| Saturated Power<br>Vds=8.0V lds=0.7xIDSS                    | Psat   | 12 GHz | dBm   |     | 30.0 |  |  |  |
| Output Third Order Intercept Point<br>Vds=8.0V lds=0.7xIDSS | OIP3   | 12 GHz | dBm   |     | 35.0 |  |  |  |
| Small Signal Gain<br>Vds=8.0V lds=0.7xlDSS                  | SSG    | 12 GHz | dB    |     | 11.0 |  |  |  |
| Power Added Efficiency at P1dB<br>Vds=8.0V lds=0.7xlDSS     | PAE    | 12 GHz | %     |     | 42   |  |  |  |

Note: Ids should be between 40% and 80% of Idss. Currently, our data shows Ids at 70% of IDSS. Low Ids will improve efficiency, but high Ids will make Psat and IP3 better.

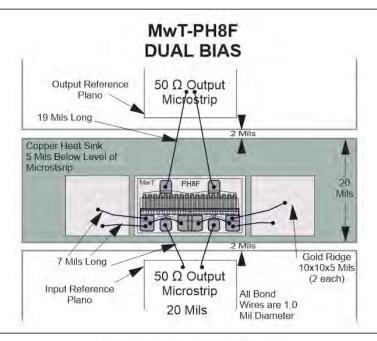

## DC Specifications: at Ta= 25 °C


| PARAMETERS & CONDITIONS                          | SYMBOL  | UNITS | MIN | TYP   | MAX  |
|--------------------------------------------------|---------|-------|-----|-------|------|
| Saturated Drain Current<br>Vds= 3.0 V Vgs= 0.0 V | IDSS    | mA    | 250 |       | 300  |
| Transconductance<br>Vds= 2.5 V Vgs= 0.0 V        | Gm      | mS    |     | 400   |      |
| Pinch-off Voltage<br>Vds= 3.0 V lds= 1.0 mA      | Vp      | V     |     | -0.8  | -1.0 |
| Gate-to-Source Breakdown Voltage<br>lgs= -0.3 mA | BVGSO   | V     |     | -17.0 |      |
| Gate-to-Drain Breakdown Voltage<br>Igd= -0.3 mA  | BVGDO   | V     |     | -18.0 |      |
| Chip Thermal Resistance Chip & 71                | pkg Rth | C/W   |     | 40    |      |

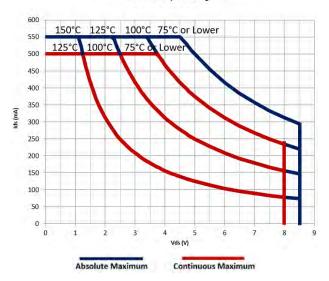
<sup>\*</sup> Overall Rth depends on case mounting



# 18 GHz Medium Power AlGaAs/InGaAs pHEMT







MwT-PH8F, Load Pull Power Data, Vds=8V; Idq=0.7xIdss

|               | Zs   |       | Z    | <u>L</u> | P <sub>sat</sub> |
|---------------|------|-------|------|----------|------------------|
| Freq<br>(GHz) | mag  | phase | mag  | phase    | dBm              |
| 2             | 0.70 | 130.0 | 0.32 | 175.3    | 31.0             |
| 4             | 0.90 | 155.0 | 0.40 | 163.5    | 30.5             |
| 6             | 0.95 | 170.0 | 0.36 | 168.0    | 30.9             |
| 8             | 0.85 | 173.0 | 0.42 | 163.3    | 30.7             |
| 10            | 0.90 | 180.0 | 0.51 | 159.7    | 30.6             |
| 12            | 0.90 | 179.4 | 0.56 | 158.5    | 30.4             |

The load pull data is based on nonlinear model provided by the foundry that processes the device.



#### SAFE OPERATING LIMITS vs BACKSIDE TEMPERATURE MwT-PH8F Chip and 71 Pkg



## **Absolute Maximum Rating**

| Symbol | Parameter             | Units | Cont Max1   | Absolute Max2 |
|--------|-----------------------|-------|-------------|---------------|
| VDS    | Drain to Source Volt. | V     | 8.0         | 8.5           |
| Tch    | Channel Temperature   | °C    | +150        | +175          |
| Tst    | Storage Temperature   | °C    | -65 to +150 | +175          |
| Pin    | RF Input Power        | mW    | 240         | 360           |

#### Notes

- 1. Exceeding any one of these limits in continuous operation may reduce the mean-time- to-failure below the design goal.
- 2. Exceeding any one of these limits may cause permanent damage.

# 18 GHz Medium Power AlGaAs/InGaAs pHEMT

# **S-Parameters**

| S-PARAIVETER Vols=7V, Iols=0.7 x Iolss |        |          |                 |         |                      |                 |                |                   |       |                |
|----------------------------------------|--------|----------|-----------------|---------|----------------------|-----------------|----------------|-------------------|-------|----------------|
| Freq.                                  | S      | 11       | S               | S21 S12 |                      | S               | S22            |                   | GVAX  |                |
| GHz                                    | dB     | Ang(°)   | dB              | Ang(°)  | dB                   | Ang(°)          | dB             | Ang(°)            |       | dB             |
| 1                                      | -0.797 | -105.764 | 23.698          | 120.928 | -30.475              | 36.428          | -9.913         | -66.285           | 0.142 | 27.086         |
| 2                                      | -1.013 | -142.316 | 19.168          | 98.781  | -29.182              | 21.607          | -12.065        | -91.703           | 0.246 | 24.175         |
| 3                                      | -1.074 | -158.417 | 15.918          | 86.533  | -28890               | 14.949          | -12.426        | -103.823          | 0.361 | 22,404         |
| 4                                      | -1066  | -168.735 | 13.455          | 76.864  | -28912               | 12.818          | -12.109        | -111.656          | 0.474 | 21.184         |
| 5                                      | -1.135 | -175.599 | 11.713          | 69.433  | -28982               | 11.368          | -11.534        | -115.912          | 0.622 | 20.347         |
| 6                                      | -1.075 | 178.059  | 10.277          | 62.338  | -28608               | 11.162          | -11.291        | -117.393          | 0.663 | 19.443         |
| 7                                      | -1.060 | 172.527  | 8.897           | 54.790  | -28.664              | 11.342          | -10.580        | -121.871          | 0.761 | 18.781         |
| 8                                      | -0.908 | 168.363  | 7.649           | 48.712  | -28.888              | 12.493          | -9.686         | -127.227          | 0.737 | 18.268         |
| 9                                      | -0.929 | 163.974  | 6443            | 41.824  | - <b>2</b> 9.157     | 13.847          | -8853          | -133.165          | 0.887 | 17.800         |
| 10                                     | -0.896 | 159.729  | 5.405           | 35.820  | -29.187              | 15.047          | -8.264         | -137.075          | 0.952 | 17.296         |
| 11                                     | -1.021 | 155.950  | 4.434           | 28.977  | - <b>2</b> 9.154     | 18775           | -7.715         | -141.092          | 1.220 | 13.962         |
| 12                                     | -0.905 | 152.770  | 3.551           | 23.436  | -29.122              | 20.573          | -7.112         | -144.743          | 1.144 | 14.033         |
| 13                                     | -0.890 | 149.662  | 2669            | 17.844  | -28.938              | 24.087          | -6.508         | -148.828          | 1.184 | 13.208         |
| 14                                     | -0.841 | 147.238  | 1840            | 12.607  | -28562               | 27.535          | -5.987         | -153.195          | 1.135 | 12.972         |
| 15                                     | -0.894 | 144.635  | 1.199           | 7.394   | - <b>2</b> 8.365     | 29.575          | -5.594         | -156.596          | 1.247 | 11.787         |
| 16                                     | -0.856 | 140.767  | 0.125           | 1.689   | -27.839              | 32.064          | -5.162         | -160.689          | 1.237 | 11.049         |
| 17                                     | -0.771 | 138.480  | -0.600          | -3.283  | - <del>2</del> 7.337 | 33.623          | -4.824         | -164.458          | 1.089 | 11.553         |
| 18                                     | -0.612 | 135.783  | -1326           | -9.305  | - <b>2</b> 6.534     | 35.571          | <b>-4.29</b> 6 | -168.525          | 0.748 | 12.604         |
| 19                                     | -0.631 | 133.950  | -1999           | -12.797 | -26.039              | 36.300          | -4.007         | - <b>171.21</b> 6 | 0.761 | 12.020         |
| 20                                     | -0.668 | 130.846  | -2771           | -17.623 | -25.622              | 37. <b>2</b> 31 | -3.771         | -174.525          | 0.836 | <b>11.42</b> 6 |
| 21                                     | -0.728 | 130.194  | -3.354          | -20.861 | - <b>24.77</b> 6     | 35.806          | -3.332         | -177.864          | 0.786 | 10.711         |
| 22                                     | -0.743 | 127.846  | -4.1 <b>2</b> 5 | -24.898 | - <b>2</b> 4.335     | 38.120          | -3.117         | 179.188           | 0.827 | 10.105         |
| 23                                     | -0.641 | 125.806  | <b>-4.77</b> 6  | -29.541 | -23.912              | 35.358          | -3.003         | 175.194           | 0.669 | 9.568          |
| 24                                     | -0.643 | 123.589  | -5.319          | -33.051 | - <b>23.41</b> 7     | 35.689          | -2775          | 172.108           | 0.642 | 9.049          |
| <b>2</b> 5                             | -0.662 | 121.452  | -6.156          | -36.456 | -22.474              | 34.629          | -2.492         | 169.560           | 0.582 | 8.159          |
| <b>2</b> 6                             | -0.666 | 119.436  | -6.822          | -39.518 | -22.043              | 33.914          | -2.303         | 166.785           | 0.566 | 7.611          |
| 27                                     | -0.688 | 117.606  | -7.493          | -42.911 | -21.454              | 32.623          | -1.999         | 163.882           | 0.503 | 6.981          |
| 28                                     | -0.543 | 116.052  | -8099           | -45.599 | -21.207              | 30.986          | -1.970         | 161.331           | 0.362 | 6.554          |
| 29                                     | -0.616 | 113.503  | -8716           | -48.616 | -20.636              | 29.121          | -1.895         | 159.018           | 0.422 | 5.960          |
| 30                                     | -0.588 | 112.267  | -9.324          | -51.172 | -20.334              | 27.951          | -1.814         | 155.833           | 0.398 | 5.505          |

# **Available Packaging:** 71 Package - MwT-PH8F71

### 18 GHz Medium Power AlGaAs/InGaAs pHEMT

### **Contact Information**

For additional information please visit <u>www.cmlmicro.com</u> or contact a sales office.

### Europe

- Maldon, UK
- Tel +44 (0) 1621 875500
- <u>sales@cmlmicro.com</u>

### America

- Winston-Salem, NC
- Tel +1 336 744 5050
- us.sales@cmlmicro.com

### Asia

- Singapore
- Tel +65 6288129
- sg.sales@cmlmicro.com

Although the information contained in this document is believed to be accurate, no responsibility is assumed by CML for its use. The product and product information is subject to change at any time without notice. CML has a policy of testing every product shipped using calibrated test equipment to ensure compliance with product specification.

© 2022 CML Microsystems Plc