

MWT-PH15F 28 GHz Medium Power AlGaAs/InGaAs pHEMT

Features:

- 28.5 dBm typical Output Power at 18 GHz
- 12 dB typical Small Signal Gain at 18 GHz
- 45% typical PAE at 18 GHz
- 0.25 x 630 Micron Refractory Metal/Gold Gate
- Excellent for Power, Gain, and High Power Added Efficiency
- Ideal for Commercial, Military, Hi-Rel Space Applications

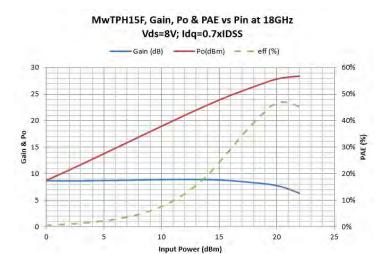
Chip Dimensions: 785 x 260 microns Chip Thickness: 100 microns

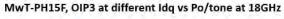
Description:

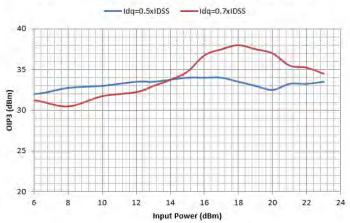
The MwT-PH15F is a AlGaAs/InGaAs pHEMT (Pseudomorphic-High-Electron-Mobility-Transistor) device whose nominal 0.25 micron gate length and 630 micron gate width make it ideally suited for applications requiring high-gain and medium power with frequency up to 28 GHz. The device is equally effective for either wideband (e.g. 6 to 18 GHz) or narrow-band applications. The chip is produced using reliable metal systems and passivated to insure excellent reliability.

Electrical Specifications: • at Ta= 25° C

PARAMETERS & CONDITIONS	SYMBOL	FREQ	UNITS	MIN	TYP
Output Power at 1dB Compression Vds=8V; lds=0.7xlDSS	P1dB	18 GHz	dBm		28.0
Saturated Power Vds=8V; lds=0.7xlDSS	Psat	18 GHz	dBm		28.5
Output Third Order Intercept Point Vds=8V; Ids=0.7xIDSS	OIP3	18 GHz	dBm		34.0
Small Signal Gain Vds=8V; lds=0.7xlDSS	SSG	18 GHz	dB		12.0
Power Added Efficiency at P1dB Vds=8V; Ids=0.7xIDSS	PAE	18 GHz	%		45

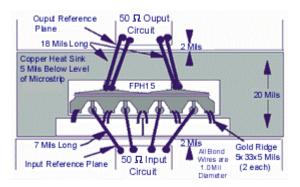

Note: Ids should be between 40% and 80% of Idss. Currently, our data shows Ids at 70% of IDSS. Low Ids will improve efficiency, but high Ids will make Psat and IP3 better.


DC Specifications: • at Ta= 25 ℃

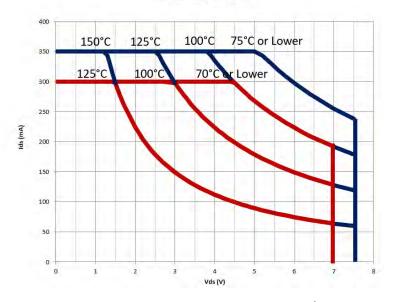

PARAMETERS & CONDITIONS	SYMBOL	UNITS	MIN	TYP	MAX
Saturated Drain Current Vds= 3.0 V Vgs= 0.0 V	IDSS	mA	150		190
Transconductance Vds= 2.5 V Vgs= 0.0 V	Gm	mS		200	
Pinch-off Voltage Vds= 3.0 V lds= 1.0 mA	Vp	V		-0.8	-1.0
Gate-to-Source Breakdown Voltage lgs= -0.3 mA	BVGSO	V		-17.0	
Gate-to-Drain Breakdown Voltage lgd= -0.3 mA	BVGDO	V		-18.0	
Chip Thermal Resistance	Rth	C/W		150 350*	

* Overall Rth depends on case mounting

28 GHz Medium Power AlGaAs/InGaAs pHEMT


MwT-PH15F, Load Power Data, Vds=8V, Idq=0.7xIdss

, , , , , , , , , , , , , , , , , , , ,								
	7	Z s	7	<u>Z</u> L	P _{sat}			
Freq (GHz)	Mag	phase	mag	phase	dBm			
2	0.60	80.0	0.09	173.3	28.4			
4	0.70	120.0	0.19	136.2	28.1			
6	0.75	140.0	0.19	143.3	28.4			
8	0.87	145.0	0.25	131.7	28.2			
10	0.84	160.0	0.29	127.4	28.1			
12	0.87	158.0	0.29	131.3	28.5			


The load pull data is based on nonlinear model provided by the foundry that processes the device.

28 GHz Medium Power AlGaAs/InGaAs pHEMT

MwT-PH15F DUAL BIAS

SAFE OPERATING LIMITS vs BACKSIDE TEMPERATURE MwT-PH15F Chip and 71 Pkg

MAXIMUM RATINGS AT Ta = 25 °C

Symbol	Parameter	Units	Cont Max1	Absolute Max2	
VDS	Drainto Source Volt.	٧	7.5	8.0	
Tch	Channel Temperature	°C	+150	+175	
Tst	StorageTemperature	°C	-65 to +150	+175	
Pin	RF Input Power	mW	200	300	
Pt	Total Power Dissipation	mW	1900	2300	

Notes:

- 1. Exceeding any one of these limits in continuous operation may reduce the mean-time- to-failure below the design goal.
- 2. Exceeding any one of these limits may cause permanent damage.

28 GHz Medium Power AlGaAs/InGaAs pHEMT

S-PARAMETER Vds=7V, Ids= 0.7 x Idss

Freq.	S11		S	S21		12	S22		K	GMAX
GHz	dB	Ang (°)	dB	Ang (°)	dB	Ang (°)	dB	Ang (°)		dB
1	-0.390	-59.911	22.734	144.444	-31.862	57.690	-4.544	-25.184	0.087	27.298
2	-0.762	-99.807	20.298	120.694	-28.498	37.989	-6.147	-40.126	0.135	24.398
3	-1.024	-123.262	17.856	105.447	-27.272	26.678	-7.331	-49.072	0.206	22.564
4	-1.112	-138.382	15.844	94.348	-26.856	19.448	-8.061	-55.741	0.266	21.350
5	-1.223	-148.957	14.128	85.818	-26.834	14.436	-8.270	-60.932	0.351	20.481
6	-1.247	-156.433	12.871	79.401	-26.631	11.775	-8.343	-62.561	0.408	19.751
7	-1.327	-163.022	11.651	72.422	-26.479	8.639	-8.311	-67.714	0.490	19.065
8	-1.152	-167.888	10.528	65.941	-26.710	5.733	-8.146	-74.597	0.474	18.619
9	-1.239	-173.045	9.464	59.899	-26.884	5.584	-8.250	-81.294	0.595	18.174
10	-1.172	-178.241	8.456	54.057	-27.081	2.444	-7.898	-86.878	0.629	17.769
11	-1.256	177.316	7.504	48.646	-27.125	1.842	-7.865	-91.669	0.771	17.315
12	-1.223	174.171	6.761	43.499	-27.490	1.241	-7.442	-97.159	0.828	17.126
13	-1.227	170.860	5.971	38.361	-27.797	0.097	-7.108	-102.609	0.931	16.884
14	-1.273	168.002	5.223	33.721	-27.958	1.263	-6.844	-108.607	1.060	15.095
15	-1.253	165.355	4.597	29.617	-28.433	2.102	-6.514	-113.117	1.163	14.068
16	-1.191	162.736	3.799	23.341	-28.611	3.110	-6.175	-117.598	1.206	13.464
17	-1.122	160.699	3.227	18.889	-28.530	4.625	-5.904	-122.296	1.155	13.492
18	-1.144	158.118	2.687	14.069	-28.817	5.616	-5.520	-126.821	1.258	12.698
19	-1.141	155.746	2.002	10.313	-29.172	8.971	-5.285	-131.188	1.403	11.807
20	-1.090	154.379	1.471	5.545	-29.166	11.016	-4.984	-135.947	1.361	11.730
21	-1.076	152.593	0.894	1.684	-29.076	14.604	-4.702	-140.580	1.368	11.364
22	-1.090	151.191	0.235	-2.218	-29.203	17.357	-4.432	-143.984	1.486	10.595
23	-1.046	149.091	-0.285	-6.346	-29.003	20.742	-4.188	-148.368	1.415	10.528
24	-1.107	147.083	-0.814	-10.005	-27.856	22.424	-3.971	-151.809	1.315	10.160
25	-1.031	146.378	-1.327	-14.109	-28.102	22.975	-3.721	-155.381	1.267	10.283
26	-1.033	144.630	-1.879	-17.297	-27.717	25.019	-3.535	-158.479	1.246	9.932
27	-1.069	143.710	-2.428	-20.881	-27.097	27.762	-3.260	-162.381	1.193	9.681
28	-0.933	142.159	-2.888	-24.105	-26.834	29.222	-3.088	-165.394	0.968	11.973
29	-0.955	140.332	-3.321	-27.723	-26.590	28.173	-2.924	-168.123	0.965	11.635
30	-0.952	139.172	-3.779	-31.184	-26.442	28.868	-2.763	-171.477	0.953	11.331

Available Packaging: 70 Package - MwT-PH8F70 71 Package - MwT-PH8F71 73 Package - MwT-PH8F73

28 GHz Medium Power AlGaAs/InGaAs pHEMT

Contact Information

For additional information please visit $\underline{www.cmlmicro.com}$ or contact a sales office.

Europe

- Maldon, UK
- Tel +44 (0) 1621 875500
- <u>sales@cmlmicro.com</u>

America

- Winston-Salem, NC
- Tel +1 336 744 5050
- <u>us.sales@cmlmicro.com</u>

Asia

- Singapore
- Tel +65 6288129
- sg.sales@cmlmicro.com

Although the information contained in this document is believed to be accurate, no responsibility is assumed by CML for its use. The product and product information is subject to change at any time without notice. CML has a policy of testing every product shipped using calibrated test equipment to ensure compliance with product specification.

© 2022 CML Microsystems Plc